Compute YAXArrays
This section describes how to create new YAXArrays by performing operations on them.
Use arithmetics to add or multiply numbers to each element of an array
Use map to apply a more complex functions to every element of an array
Use mapslices to reduce a dimension, e.g. to get the mean over all time steps
Use mapCube to apply complex functions on an array that may change any dimensions
Let's start by creating an example dataset:
using YAXArrays
using YAXArrays: YAXArrays as YAX
using Dates
axlist = (
YAX.time(Date("2022-01-01"):Day(1):Date("2022-01-30")),
lon(range(1, 10, length=10)),
lat(range(1, 5, length=15)),
)
data = rand(30, 10, 15)
properties = Dict(:origin => "user guide")
a = YAXArray(axlist, data, properties)
┌ 30×10×15 YAXArray{Float64, 3} ┐
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
→ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{Symbol, String} with 1 entry:
:origin => "user guide"
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 35.16 KB
└──────────────────────────────────────────────────────────────────────────────┘
Modify elements of a YAXArray
a[1,2,3]
0.8638599930441428
a[1,2,3] = 42
42
a[1,2,3]
42.0
WARNING
Some arrays, e.g. those saved in a cloud object storage are immutable making any modification of the data impossible.
Arithmetics
Add a value to all elements of an array and save it as a new array:
a2 = a .+ 5
┌ 30×10×15 YAXArray{Float64, 3} ┐
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
→ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{Symbol, String} with 1 entry:
:origin => "user guide"
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 35.16 KB
└──────────────────────────────────────────────────────────────────────────────┘
a2[1,2,3] == a[1,2,3] + 5
true
map
Apply a function on every element of an array individually:
offset = 5
map(a) do x
(x + offset) / 2 * 3
end
┌ 30×10×15 YAXArray{Float64, 3} ┐
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
→ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{Symbol, String} with 1 entry:
:origin => "user guide"
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 35.16 KB
└──────────────────────────────────────────────────────────────────────────────┘
This keeps all dimensions unchanged. Note, that here we can not access neighboring elements. In this case, we can use mapslices
or mapCube
instead. Each element of the array is processed individually.
The code runs very fast, because map
applies the function lazily. Actual computation will be performed only on demand, e.g. when elements were explicitly requested or further computations were performed.
mapslices
Reduce the time dimension by calculating the average value of all points in time:
import Statistics: mean
mapslices(mean, a, dims="Time")
┌ 10×15 YAXArray{Union{Missing, Float64}, 2} ┐
├────────────────────────────────────────────┴─────────────────────────── dims ┐
↓ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
→ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 1.17 KB
└──────────────────────────────────────────────────────────────────────────────┘
There is no time dimension left, because there is only one value left after averaging all time steps. We can also calculate spatial means resulting in one value per time step:
mapslices(mean, a, dims=("lat", "lon"))
┌ 30-element YAXArray{Union{Missing, Float64}, 1} ┐
├─────────────────────────────────────────────────┴────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 240.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
mapCube
mapCube
is the most flexible way to apply a function over subsets of an array. Dimensions may be added or removed.
Operations over several YAXArrays
Here, we will define a simple function, that will take as input several YAXArrays
. But first, let's load the necessary packages.
using YAXArrays, Zarr
using YAXArrays: YAXArrays as YAX
using Dates
Define function in space and time
f(lo, la, t) = (lo + la + Dates.dayofyear(t))
f (generic function with 1 method)
now, mapCube
requires this function to be wrapped as follows
function g(xout, lo, la, t)
xout .= f.(lo, la, t)
end
g (generic function with 1 method)
INFO
Note the .
after f
, this is because we will slice across time, namely, the function is broadcasted along this dimension.
Here, we do create YAXArrays
only with the desired dimensions as
julia> lon_yax = YAXArray(lon(range(1, 15)))
┌ 15-element YAXArray{Int64, 1} ┐
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ lon Sampled{Int64} 1:15 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 120.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
julia> lat_yax = YAXArray(lat(range(1, 10)))
┌ 10-element YAXArray{Int64, 1} ┐
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ lat Sampled{Int64} 1:10 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 80.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
And a time Cube's Axis
tspan = Date("2022-01-01"):Day(1):Date("2022-01-30")
time_yax = YAXArray(YAX.time(tspan))
┌ 30-element YAXArray{Date, 1} ┐
├──────────────────────────────┴───────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 240.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
note that the following can be extended to arbitrary YAXArrays
with additional data and dimensions.
Let's generate a new cube
using mapCube
and saving the output directly into disk.
julia> gen_cube = mapCube(g, (lon_yax, lat_yax, time_yax);
indims = (InDims(), InDims(), InDims("time")),
outdims = OutDims("time", overwrite=true, path="my_gen_cube.zarr", backend=:zarr,
outtype = Float32)
# max_cache=1e9
)
┌ 30×15×10 YAXArray{Union{Missing, Float32}, 3} ┐
├───────────────────────────────────────────────┴──────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
→ lon Sampled{Int64} 1:15 ForwardOrdered Regular Points,
↗ lat Sampled{Int64} 1:10 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"missing_value" => 1.0f32
├─────────────────────────────────────────────────────────────── loaded lazily ┤
data size: 17.58 KB
└──────────────────────────────────────────────────────────────────────────────┘
"time axis goes first"
Note that currently the time
axis in the output cube goes first.
Check that it is working
julia> gen_cube.data[1, :, :]
15×10 Matrix{Union{Missing, Float32}}:
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0
13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0
14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0
15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0
16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0
17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0
but, we can generate a another cube with a different output order
as follows
julia> gen_cube = mapCube(g, (lon_yax, lat_yax, time_yax);
indims = (InDims("lon"), InDims(), InDims()),
outdims = OutDims("lon", overwrite=true, path="my_gen_cube.zarr", backend=:zarr,
outtype = Float32)
# max_cache=1e9
)
┌ 15×10×30 YAXArray{Union{Missing, Float32}, 3} ┐
├───────────────────────────────────────────────┴──────────────────────── dims ┐
↓ lon Sampled{Int64} 1:15 ForwardOrdered Regular Points,
→ lat Sampled{Int64} 1:10 ForwardOrdered Regular Points,
↗ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"missing_value" => 1.0f32
├─────────────────────────────────────────────────────────────── loaded lazily ┤
data size: 17.58 KB
└──────────────────────────────────────────────────────────────────────────────┘
INFO
Note that now the broadcasted dimension is lon
.
we can see this by slicing on the last dimension now
gen_cube.data[:, :, 1]
15×10 Matrix{Union{Missing, Float32}}:
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0
13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0
14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0
15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0
16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0
17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0
which outputs the same as the gen_cube.data[1, :, :]
called above.
OutDims and YAXArray Properties
Here, we will consider different scenarios, namely how we deal with different input cubes and how to specify the output ones. We will illustrate this with the following test example and the subsequent function definitions.
using YAXArrays
using YAXArrays: YAXArrays as YAX
using Dates
using Zarr
using Random
axlist = (
YAX.time(Date("2022-01-01"):Day(1):Date("2022-01-05")),
lon(range(1, 4, length=4)),
lat(range(1, 3, length=3)),
Variables(["a", "b"])
)
Random.seed!(123)
data = rand(1:5, 5, 4, 3, 2)
properties = Dict("description" => "multi dimensional test cube")
yax_test = YAXArray(axlist, data, properties)
┌ 5×4×3×2 YAXArray{Int64, 4} ┐
├────────────────────────────┴─────────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-05") ForwardOrdered Regular Points,
→ lon Sampled{Float64} 1.0:1.0:4.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:1.0:3.0 ForwardOrdered Regular Points,
⬔ Variables Categorical{String} ["a", "b"] ForwardOrdered
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, String} with 1 entry:
"description" => "multi dimensional test cube"
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 960.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
One InDims to many OutDims
In the following function, note how the outputs are defined first and the inputs later.
function one_to_many(xout_one, xout_two, xout_flat, xin_one)
xout_one .= f1.(xin_one)
xout_two .= f2.(xin_one)
xout_flat .= sum(xin_one)
return nothing
end
f1(xin) = xin + 1
f2(xin) = xin + 2
f2 (generic function with 1 method)
now, we define InDims
and OutDims
:
indims_one = InDims("Time")
# outputs dimension
properties_one = Dict{String, Any}("name" => "plus_one")
properties_two = Dict{String, Any}("name" => "plus_two")
outdims_one = OutDims("Time"; properties=properties_one)
outdims_two = OutDims("Time"; properties=properties_two)
outdims_flat = OutDims(;) # it will get the default `layer` name if open as dataset
OutDims((), :auto, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}(), false, Array, :input, 1)
ds = mapCube(one_to_many, yax_test,
indims = indims_one,
outdims = (outdims_one, outdims_two, outdims_flat));
let's see the second output
ds[2]
┌ 5×4×3×2 YAXArray{Union{Missing, Int64}, 4} ┐
├────────────────────────────────────────────┴─────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-05") ForwardOrdered Regular Points,
→ lon Sampled{Float64} 1.0:1.0:4.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:1.0:3.0 ForwardOrdered Regular Points,
⬔ Variables Categorical{String} ["a", "b"] ForwardOrdered
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any} with 1 entry:
"name" => "plus_two"
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 960.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
Many InDims to many OutDims
Let's consider a second test set
properties_2d = Dict("description" => "2d dimensional test cube")
yax_2d = YAXArray(axlist[2:end], rand(-1:1, 4, 3, 2), properties_2d)
┌ 4×3×2 YAXArray{Int64, 3} ┐
├──────────────────────────┴──────────────────────────────────────── dims ┐
↓ lon Sampled{Float64} 1.0:1.0:4.0 ForwardOrdered Regular Points,
→ lat Sampled{Float64} 1.0:1.0:3.0 ForwardOrdered Regular Points,
↗ Variables Categorical{String} ["a", "b"] ForwardOrdered
├─────────────────────────────────────────────────────────────── metadata ┤
Dict{String, String} with 1 entry:
"description" => "2d dimensional test cube"
├─────────────────────────────────────────────────────── loaded in memory ┤
data size: 192.0 bytes
└─────────────────────────────────────────────────────────────────────────┘
The function definitions operating in this case are as follows
function many_to_many(xout_one, xout_two, xout_flat, xin_one, xin_two, xin_drei)
xout_one .= f1.(xin_one)
xout_two .= f2mix.(xin_one, xin_two)
xout_flat .= sum(xin_drei) # this will reduce the time dimension if we set outdims = OutDims()
return nothing
end
f2mix(xin_xyt, xin_xy) = xin_xyt - xin_xy
f2mix (generic function with 1 method)
Specify path in OutDims
indims_one = InDims("Time")
indims_2d = InDims() # ? it matches only to the other 2 dimensions and uses the same values for each time step
properties = Dict{String, Any}("name"=> "many_to_many_two")
outdims_one = OutDims("Time")
outdims_two = OutDims("Time"; path = "test_mm.zarr", properties)
outdims_flat = OutDims()
OutDims((), :auto, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}(), false, Array, :input, 1)
ds = mapCube(many_to_many, (yax_test, yax_2d, yax_test),
indims = (indims_one, indims_2d, indims_one),
outdims = (outdims_one, outdims_two, outdims_flat));
And we can open the one that was saved directly to disk.
ds_mm = open_dataset("test_mm.zarr")
YAXArray Dataset
Shared Axes:
(↓ time Sampled{DateTime} [2022-01-01T00:00:00, …, 2022-01-05T00:00:00] ForwardOrdered Irregular Points,
→ lon Sampled{Float64} 1.0:1.0:4.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:1.0:3.0 ForwardOrdered Regular Points)
Variables:
a, b
Different InDims names
Here, the goal is to operate at the pixel level (longitude, latitude), and then apply the corresponding function to the extracted values. Consider the following toy cubes:
Random.seed!(123)
data = rand(3.0:5.0, 5, 4, 3)
axlist = (lon(1:4), lat(1:3), Dim{:depth}(1:7),)
yax_2d = YAXArray(axlist, rand(-3.0:0.0, 4, 3, 7))
┌ 4×3×7 YAXArray{Float64, 3} ┐
├────────────────────────────┴──────────────────────── dims ┐
↓ lon Sampled{Int64} 1:4 ForwardOrdered Regular Points,
→ lat Sampled{Int64} 1:3 ForwardOrdered Regular Points,
↗ depth Sampled{Int64} 1:7 ForwardOrdered Regular Points
├───────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├───────────────────────────────────────── loaded in memory ┤
data size: 672.0 bytes
└───────────────────────────────────────────────────────────┘
and
Random.seed!(123)
data = rand(3.0:5.0, 5, 4, 3)
axlist = (YAX.time(Date("2022-01-01"):Day(1):Date("2022-01-05")),
lon(1:4), lat(1:3),)
properties = Dict("description" => "multi dimensional test cube")
yax_test = YAXArray(axlist, data, properties)
┌ 5×4×3 YAXArray{Float64, 3} ┐
├────────────────────────────┴─────────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-05") ForwardOrdered Regular Points,
→ lon Sampled{Int64} 1:4 ForwardOrdered Regular Points,
↗ lat Sampled{Int64} 1:3 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, String} with 1 entry:
"description" => "multi dimensional test cube"
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 480.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
and the corresponding functions
function mix_time_depth(xin_xyt, xin_xyz)
s = sum(abs.(xin_xyz))
return xin_xyt.^2 .+ s
end
function time_depth(xout, xin_one, xin_two)
xout .= mix_time_depth(xin_one, xin_two)
# Note also that there is no dot anymore in the function application!
return nothing
end
time_depth (generic function with 1 method)
with the final mapCube operation as follows
ds = mapCube(time_depth, (yax_test, yax_2d),
indims = (InDims("Time"), InDims("depth")), # ? anchor dimensions and then map over the others.
outdims = OutDims("Time"))
┌ 5×4×3 YAXArray{Union{Missing, Float64}, 3} ┐
├────────────────────────────────────────────┴─────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-05") ForwardOrdered Regular Points,
→ lon Sampled{Int64} 1:4 ForwardOrdered Regular Points,
↗ lat Sampled{Int64} 1:3 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 480.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
- TODO:
Example passing additional arguments to function.
MovingWindow
Multiple variables outputs, OutDims, in the same YAXArray
Creating a vector array
Here we transform a raster array with spatial dimension lat and lon into a vector array having just one spatial dimension i.e. region. First, create the raster array:
using YAXArrays
using YAXArrays: YAXArrays as YAX
using DimensionalData
using Dates
axlist = (
YAX.time(Date("2022-01-01"):Day(1):Date("2022-01-30")),
lon(range(1, 10, length=10)),
lat(range(1, 5, length=15)),
)
data = rand(30, 10, 15)
raster_arr = YAXArray(axlist, data)
┌ 30×10×15 YAXArray{Float64, 3} ┐
├───────────────────────────────┴──────────────────────────────────────── dims ┐
↓ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points,
→ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
↗ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 35.16 KB
└──────────────────────────────────────────────────────────────────────────────┘
Then, create a Matrix with the same spatial dimensions indicating to which region each point belongs to:
regions_mat = map(Iterators.product(raster_arr.lon, raster_arr.lat)) do (lon, lat)
1 <= lon < 10 && 1 <= lat < 5 && return "A"
1 <= lon < 10 && 5 <= lat < 10 && return "B"
10 <= lon < 15 && 1 <= lat < 5 && return "C"
return "D"
end
regions_mat = DimArray(regions_mat, (raster_arr.lon, raster_arr.lat))
┌ 10×15 DimArray{String, 2} ┐
├───────────────────────────┴──────────────────────────────────────────── dims ┐
↓ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
→ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
└──────────────────────────────────────────────────────────────────────────────┘
↓ → 1.0 1.28571 1.57143 1.85714 … 4.14286 4.42857 4.71429 5.0
1.0 "A" "A" "A" "A" "A" "A" "A" "B"
2.0 "A" "A" "A" "A" "A" "A" "A" "B"
3.0 "A" "A" "A" "A" "A" "A" "A" "B"
4.0 "A" "A" "A" "A" "A" "A" "A" "B"
5.0 "A" "A" "A" "A" … "A" "A" "A" "B"
6.0 "A" "A" "A" "A" "A" "A" "A" "B"
7.0 "A" "A" "A" "A" "A" "A" "A" "B"
8.0 "A" "A" "A" "A" "A" "A" "A" "B"
9.0 "A" "A" "A" "A" "A" "A" "A" "B"
10.0 "C" "C" "C" "C" … "C" "C" "C" "D"
which has the same spatial dimensions as the raster array at any given point in time:
DimArray(raster_arr[time = 1])
┌ 10×15 DimArray{Float64, 2} ┐
├────────────────────────────┴─────────────────────────────────────────── dims ┐
↓ lon Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
→ lat Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
└──────────────────────────────────────────────────────────────────────────────┘
↓ → 1.0 1.28571 1.57143 … 4.42857 4.71429 5.0
1.0 0.17593 0.417937 0.0723492 0.178603 0.781773 0.875658
2.0 0.701332 0.15394 0.685454 0.372761 0.984803 0.472308
3.0 0.120997 0.829062 0.684389 0.463503 0.840389 0.536399
⋮ ⋱ ⋮
8.0 0.145747 0.432286 0.465103 0.889583 0.514979 0.671662
9.0 0.538981 0.497189 0.167676 0.595405 0.752417 0.93986
10.0 0.824354 0.376135 0.551732 … 0.101524 0.121947 0.508557
Now we calculate the list of corresponding points for each region. This will be re-used for each point in time during the final mapCube
. In addition, this avoids the allocation of unnecessary memory.
regions = ["A", "B", "C", "D"]
points_of_regions = map(enumerate(regions)) do (i,region)
region => findall(isequal(region), regions_mat)
end |> Dict |> sort
OrderedCollections.OrderedDict{String, Vector{CartesianIndex{2}}} with 4 entries:
"A" => [CartesianIndex(1, 1), CartesianIndex(2, 1), CartesianIndex(3, 1), Car…
"B" => [CartesianIndex(1, 15), CartesianIndex(2, 15), CartesianIndex(3, 15), …
"C" => [CartesianIndex(10, 1), CartesianIndex(10, 2), CartesianIndex(10, 3), …
"D" => [CartesianIndex(10, 15)]
Finally, we can transform the entire raster array:
vector_array = mapCube(
raster_arr,
indims=InDims("lon", "lat"),
outdims=OutDims(Dim{:region}(regions))
) do xout, xin
for (region_pos, points) in enumerate(points_of_regions.vals)
# aggregate values of points in the current region at the current date
xout[region_pos] = sum(view(xin, points))
end
end
┌ 4×30 YAXArray{Union{Missing, Float64}, 2} ┐
├───────────────────────────────────────────┴──────────────────────────── dims ┐
↓ region Categorical{String} ["A", "B", "C", "D"] ForwardOrdered,
→ time Sampled{Date} Date("2022-01-01"):Dates.Day(1):Date("2022-01-30") ForwardOrdered Regular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{String, Any}()
├──────────────────────────────────────────────────────────── loaded in memory ┤
data size: 960.0 bytes
└──────────────────────────────────────────────────────────────────────────────┘
This gives us a vector array with only one spatial dimension, i.e. the region. Note that we still have 30 points in time. The transformation was applied for each date separately.
Hereby, xin
is a 10x15 array representing a map at a given time and xout
is a 4 element vector of missing values initially representing the 4 regions at that date. Then, we set each output element by the sum of all corresponding points
Distributed Computation
All map methods apply a function on all elements of all non-input dimensions separately. This allows to run each map function call in parallel. For example, we can execute each date of a time series in a different CPU thread during spatial aggregation.
The following code does a time mean over all grid points using multiple CPUs of a local machine:
using YAXArrays
using YAXArrays: YAXArrays as YAX
using Dates
using Distributed
axlist = (
YAX.time(Date("2022-01-01"):Day(1):Date("2022-01-30")),
lon(range(1, 10, length=10)),
lat(range(1, 5, length=15)),
)
data = rand(30, 10, 15)
properties = Dict(:origin => "user guide")
a = YAXArray(axlist, data, properties)
addprocs(2)
@everywhere begin
using YAXArrays
using Zarr
using Statistics
end
@everywhere function mymean(output, pixel)
@show "doing a mean"
output[:] .= mean(pixel)
end
mapCube(mymean, a, indims=InDims("time"), outdims=OutDims())
In the last example, mapCube
was used to map the mymean
function. mapslices
is a convenient function that can replace mapCube
, where you can omit defining an extra function with the output argument as an input (e.g. mymean
). It is possible to simply use mapslice
mapslices(mean ∘ skipmissing, a, dims="time")
It is also possible to distribute easily the workload on a cluster, with little modification to the code. To do so, we use the ClusterManagers
package.
using Distributed
using ClusterManagers
addprocs(SlurmManager(10))